Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 70, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175288

RESUMO

BACKGROUND: The tea tree (Melaleuca alternifolia) is renowned for its production of tea tree oil, an essential oil primarily composed of terpenes extracted from its shoot. MYB transcription factors, which are one of the largest TF families, play a crucial role in regulating primary and secondary metabolite synthesis. However, knowledge of the MYB gene family in M. alternifolia is limited. METHODS AND RESULTS: Here, we conducted a comprehensive genome-wide analysis of MYB genes in M. alternifolia, referred to as MaMYBs, including phylogenetic relationships, structures, promoter regions, and GO annotations. Our findings classified 219 MaMYBs into four subfamilies: one 5R-MYB, four 3R-MYBs, sixty-one MYB-related, and the remaining 153 are all 2R-MYBs. Seven genes (MYB189, MYB146, MYB44, MYB29, MYB175, MYB162, and MYB160) were linked to terpenoid synthesis based on GO annotation. Phylogenetic analysis with Arabidopsis homologous MYB genes suggested that MYB193 and MYB163 may also be involved in terpenoid synthesis. Additionally, through correlation analysis of gene expression and metabolite content, we identified 42 MYB genes associated with metabolite content. CONCLUSION: The results provide valuable insights into the importance of MYB transcription factors in essential oil production in M. alternifolia. These findings lay the groundwork for a better understanding of the MYB regulatory network and the development of novel strategies to enhance essential oil synthesis in M. alternifolia.


Assuntos
Arabidopsis , Melaleuca , Óleos Voláteis , Genes myb , Melaleuca/genética , Filogenia , Chás Medicinais , Fatores de Transcrição/genética , Terpenos
2.
Front Plant Sci ; 14: 1137214, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021318

RESUMO

Mosses are widely used in the establishment of greenery. However, little research has been conducted to choose a suitable species or improve their performance for this application. In our study, we examined Vesicularia montagnei (V. montagnei), a robust moss that is widely distributed in temperate, subtropical, and tropical Asia with varying environmental conditions. Axenic cultivation system of V. montagnei was developed on modified BCD medium, which enabled its propagation and multiplication in vitro. In this axenic cultivation environment, several diploid V. montagnei lines with enhancement of rhizoid system were generated through artificial induction of diploidization. Transcriptomic analysis revealed that several genes responsible for jasmonic acid (JA) biosynthesis and signaling showed significant higher expression levels in the diploid lines compared to the wild type. These results are consistent with the increasement of JA content in the diploid lines. Our establishment of the axenic cultivation method may provide useful information for further study of other Vesicularia species. The diploid V. montagnei lines with improved rhizoid system may hold promising potential for greenery applications. Additionally, our study sheds light on the biosynthesis and functions of JA in the early landed plants.

3.
Mol Med Rep ; 27(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36524376

RESUMO

Spinal cord injury (SCI) is a severe neurological disorder and the molecular mechanisms leading to its poor prognosis remain to be elucidated. S100A1, a mediator of Ca2+ handling of sarcoplasmic reticulum and mitochondrial function, operates as an endogenous danger signal (alarmin) associated with inflammatory response and tissue injury. The aim of the present study was to investigate the expression and biological effects of S100A1 in SCI. A rat model of SCI and a PC12 cell model of lipopolysaccharide (LPS)­induced inflammation were established to examine S100A1 expression at the mRNA and protein levels. The inflammation level, which was mediated by S100A1, was determined based on inflammatory factor (IL­1ß, IL­6 and TNF­α) and anti­inflammatory factor (IL­10) expression. The effects of S100A1 on cellular oxidation and anti­oxidation levels were observed by detecting the levels of reactive oxygen species, superoxide dismutase, catalase activities and nuclear factor erythroid 2­related factor 2 expression. The protein levels of Bax, Bcl2 and cleaved caspase­3 were used for the evaluation of the effects of S100A1 on apoptosis. Phosphorylated (p­)ERK1/2 expression was used to evaluate the effects of S100A1 on ERK signaling. The results revealed that S100A1 expression was significantly upregulated in vivo and in vitro in the PC12 cell model of LPS­inflammation. The silencing and overexpression of S100A1 helped alleviate and aggravate LPS­induced inflammation, oxidative stress and apoptosis levels, respectively. S100A1 was found to regulate the ERK signaling pathway positively. An inhibitor of ERK signaling (MK­8353) partially abolished the promoting effects of the overexpression of S100A1 on inflammation, oxidative stress damage and apoptosis. In conclusion, S100A1 expression was elevated in model of SCI and in the PC12 cell model of LPS­induced inflammation. Furthermore, the overexpression/silencing S100A1 aggravated/mitigated the inflammation, oxidative stress damage and the apoptosis of LPS­stimulated PC12 cells via the ERK signaling pathway. The present study revealed the mechanism of S100A1 in SCI, which provided a new theoretic reference for future research on SCI.


Assuntos
Lipopolissacarídeos , Traumatismos da Medula Espinal , Ratos , Animais , Lipopolissacarídeos/farmacologia , Células PC12 , Ratos Sprague-Dawley , Estresse Oxidativo , Traumatismos da Medula Espinal/metabolismo , Inflamação/metabolismo , Apoptose , Transdução de Sinais , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...